Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.369
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 49(3): 265-273, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500323

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) on the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/cAMP response element binding protein (CREB) signaling pathway-related proteins and hippocampal neuron apoptosis in diabetic cognitive impairment (DCI) rats, and to explore the mechanisms of EA in treating DCI. METHODS: Adult male SD rats were randomly divided into normal, model, and EA groups, with 12 rats in each group. The animal model of DCI was replicated using a high-fat, high-sugar diet combined with low-dose streptozotocin. The EA group received EA stimulation at "Yishu" (EX-B6), "Zusanli" (ST36), "Baihui" (GV20), and "Dazhui" (GV14). Blood glucose contents of the rats in each group were measured. The Morris water maze test was used to assess the learning and memory abilities of rats. Transmission electron microscopy was used to observe the ultrastructure of hippocampal CA1 neurons. Nissl staining was used to observe the pathological changes in hippocampal CA1 neurons. TUNEL staining was used to detect the apoptosis in hippocampal CA1 neurons. Western blot was used to detect the protein expression levels of p-PI3K/PI3K and p-Akt/Akt, as well as CREB, p-CREB, cysteine aspartate pro-tease (Caspase)-3, B-cell lymphoma-2 (Bcl-2), and Bcl-2 related X protein (Bax) in the hippocampal tissue of rats. RESULTS: Compared with the normal group, the rats' random blood glucose contents were significantly increased (P<0.01), the escape latency prolonged (P<0.01), and the original platform crossing counts reduced (P<0.01) in the model group. Significant damage to hippocampal CA1 neurons, a significantly increased neuronal apoptosis index (P<0.01), decreased ratio of p-PI3K/PI3K and p-Akt/Akt and expression of CREB, p-CREB and Bcl-2 proteins, increased expression of Caspase-3 and Bax proteins (P<0.01) were observed in the hippocampal tissue of rats in the model group. Compared with the model group, the rats in the EA group showed decreased random blood glucose content (P<0.01), shortened escape latency (P<0.01), increased original platform crossing counts (P<0.01), improved quantity and pathological morphology and ultrastructure of hippocampal CA1 neurons, reduced neuronal apoptosis index (P<0.01), increased ratio of p-PI3K/PI3K and p-Akt/Akt, and expression of CREB, p-CREB and Bcl-2 proteins (P<0.05, P<0.01) in the hippocampal tissue, and decreased expression of Caspase-3 and Bax proteins (P<0.01). CONCLUSIONS: EA can improve the learning and memory abilities of rats with DCI, and the mechanism may be related to the regulation of the expression of PI3K/Akt/CREB signaling pathway-related proteins, which attenuates the neuronal apoptosis in the hippocampus of rats, and improves the neural function.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus , Eletroacupuntura , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinases/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Glicemia , Transdução de Sinais , Hipocampo/metabolismo , Apoptose , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia
2.
Zhen Ci Yan Jiu ; 49(3): 274-282, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500324

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) on the changes of behavior and hippocampal inflammatory factors in rats with chronic fatigue syndrome (CFS), so as to explore its possible mechanisms in the treatment of CFS. METHODS: Twenty-seven SD rats were randomly divided into control, model and electroacupuncture (EA) groups (n=9 rats in each group). The CFS model was established by multi-factor compound stress stimulation method. Rats of the EA group received EA (10 Hz) at "Shenting" (GV24) penetrating "Baihui" (GV20), "Dazhui" (GV14) for 15 min, twice a day for 14 days. The general conditions, Morris water maze test, open field test, the exhausted running platform were conducted for determining the rats' locomotor and learning-memory activities. H.E. staining was used to observe the morphological structure of neurons in hippocampal CA1 region. The contents of interleukin (IL)-10, IL-17 and transforming growth factor (TGF) ß1 in hippocampus and serum of rats were detected by ELISA, and the positive expressions of IL-10, IL-17 and TGF-ß1 in hippocampal CA1 region were detected by immunofluorescence staining. RESULTS: Compared with the control group, the score of general condition was increased (P<0.05), the escape latency was prolonged (P<0.05), the number of crossing the original platform was decreased (P<0.05), the numbers of crossing the grid and entering the central area were increased (P<0.05), and the exhaustive treadmill time was shortened (P<0.05) in the model group. The contents of IL-10 in the hippocampus and serum were decreased (P<0.05), while IL-17 and TGF-ß1 contents were increased (P<0.05). The immunofluorescence intensity of IL-10 in the hippocampus was decreased (P<0.05), while the intensity of IL-17 and TGF-ß1 were increased (P<0.05). After treatment, compared with the model group, the score of general condition was decreased (P<0.05), the escape latency was shortened (P<0.05), the number of crossing the original platform was increased (P<0.05), the numbers of crossing the grid and entering the central area were decreased (P<0.05), and the exhaustive treadmill time was prolonged (P<0.05) in the EA group. The contents of IL-10 in the hippocampus and serum were increased (P<0.05), while IL-17 and TGF-ß1 levels were decreased (P<0.05). The immunofluorescence intensity of IL-10 in the hippocampus was increased (P<0.05), while the intensity of IL-17 and TGF-ß1 were decreased (P<0.05). H.E. staining showed that in the model group, the number of neurons in the hippocampus decreased, with disordered arrangement and loose structure, and a small numbers of neuronal nuclei were missing. The degree of tissue damage of the EA group was milder than that of the model group. CONCLUSIONS: EA can alleviate fatigue and spatial learning and memory impairment in CFS rats, which may be related to the regulation of peripheral and central inflammation.


Assuntos
Eletroacupuntura , Síndrome de Fadiga Crônica , Ratos , Animais , Ratos Sprague-Dawley , Interleucina-10 , Síndrome de Fadiga Crônica/terapia , Interleucina-17/genética , Fator de Crescimento Transformador beta1/genética , Hipocampo
3.
Neurochem Res ; 49(5): 1406-1416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522048

RESUMO

Depression is characterized by the loss of pleasure and a depressed mood, and it is a common mental disorder in the twenty-first century. Multiple gene imbalances, which are considered pathological factors in depression, were detected in the brain. Electroacupuncture is an effective therapeutic approach for depression that has minimal side effects. As a crucial structure in the hypothalamus-pituitary-adrenal, the hypothalamus plays a key role in depression. Our study focused on the transcriptome level in the hypothalamus of depressive rats. After chronic unpredictable mild stress, the rats exhibited depressive-like behaviors, such as decreased sucrose consumption in the SPT, increased time in the central area of the OFT and increased immobility in the FST. Moreover, electroacupuncture alleviated depressive behaviors. Because of the importance of the hypothalamus in depression, we next detected gene expression in the hypothalamus. A total of 510 genes (125 upregulated genes and 385 downregulated genes) were detected in the hypothalamus of depressive rats. 15 of the 125 upregulated genes and 63 of the 385 downregulated genes could be altered by electroacupuncture, which suggests the antidepressant effect of electroacupuncture. Our study also provided the evidence that regulation of transcriptome in the hypothalamus might be a potential mechanism of electroacupuncture treatment.


Assuntos
Depressão , Eletroacupuntura , Humanos , Ratos , Animais , Depressão/terapia , Depressão/tratamento farmacológico , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Expressão Gênica , Estresse Psicológico/terapia , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo
4.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515015

RESUMO

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Assuntos
Deficiências de Ferro , Ferro , Gravidez , Feminino , Animais , Ratos , Masculino , Ferro/metabolismo , Cromatina/genética , Cromatina/metabolismo , Animais Recém-Nascidos , Ratos Sprague-Dawley , Epigênese Genética , Colina/farmacologia , Colina/metabolismo , Hipocampo
5.
Sci Total Environ ; 923: 171474, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447734

RESUMO

Manganese (Mn), a common environmental and occupational risk factor for Parkinson's disease (PD), can cause central nervous system damage and gastrointestinal dysfunction. The melatonin has been shown to effectively improve neural damage and intestinal microbiota disturbances in animal models. This research investigated the mechanism by which exogenous melatonin prevented Mn-induced neurogenesis impairment and neural damage. Here, we established subchronic Mn-exposed mice model and melatonin supplement tests to evaluate the role of melatonin in alleviating Mn-induced neurogenesis impairment. Mn induced neurogenesis impairment and microglia overactivation, behavioral dysfunction, gut microbiota dysbiosis and serum metabolic disorder in mice. All these events were reversed with the melatonin supplement. The behavioral tests revealed that melatonin group showed approximately 30 % restoration of motor activity. According to quantitative real time polymerase chain reaction (qPCR) results, melatonin group showed remarkable restoration of the expression of dopamine neurons and neurogenesis markers, approximately 46.4 % (TH), 68.4 % (DCX in hippocampus) and 48 % (DCX in striatum), respectively. Interestingly, melatonin increased neurogenesis probably via the gut microbiota and metabolism modulation. The correlation analysis of differentially expressed genes associated with hippocampal neurogenesis indicated that Firmicutes-lipid metabolism might mediate the critical repair role of melatonin in neurogenesis in Mn-exposed mice. In conclusion, exogenous melatonin supplementation can promote neurogenesis, and restore neuron loss and neural function in Mn-exposed mice, and the multi-omics results provide new research ideas for future mechanistic studies.


Assuntos
Microbioma Gastrointestinal , Melatonina , Camundongos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Manganês/metabolismo , Hipocampo/metabolismo , Neurônios Dopaminérgicos
6.
Biomed Pharmacother ; 173: 116425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490155

RESUMO

Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.


Assuntos
Depressão , Ferroptose , Glucosídeos , Luteolina , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Microglia/metabolismo , Hipocampo , Comportamento Animal , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
7.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492791

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Assuntos
Rosa , Ratos , Animais , Serotonina/metabolismo , Irã (Geográfico) , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
8.
J Ethnopharmacol ; 327: 118063, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38493906

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Moutan cortex (MC), the root bark of Paeonia suffruticosa Anderws (Paeoniaceae), has been historically employed in traditional herbal medicine for addressing women's ailments by replenishing kidney Yin. AIM OF THE STUDY: We aimed to explore if paeonol, an active constituent of MC, could ameliorate neuropsychiatric symptoms, such as anxiety, depression, and cognitive impairments, associated with post-menopausal syndrome (PMS) in an ovariectomized (OVX) mouse model. MATERIALS AND METHODS: The experimental design comprised 6 groups, including a sham group, OVX group, paeonol administration groups (3, 10 or 30 mg/kg, p.o.), and an estradiol (E2)-treated positive control group. Behavioral tests including the open field, novel object recognition, Y-maze, elevated plus-maze, splash, and forced swimming tests were conducted. In addition, we investigated the effets of paeonol on the phosphorylated levels of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as on the expression levels of G protein-coupled receptor (GPR30) and brain-derived neurotrophic factor (BDNF) in the prefrontal cortex and hippocampus. RESULTS: Paeonol treatment (10 and 30 mg/kg, p.o.) effectively reversed the cognitive decline in OVX mice, measured by the novel object recognition and Y-maze tests, similar to that in the positive control group. Additionally, it alleviated anxiety- and depressive-like behaviors, as evaluated by the elevated plus-maze test, splash test, and forced swimming test. Paeonol restored GPR30 expression levels in the prefrontal cortex and hippocampus, mirroring the effects of E2 administration. Furthermore, it reversed the reduced expression levels of the PI3K-Akt-mTOR signaling pathway in the prefrontal cortex and hippocampus and increased BDNF expression in the hippocampus of OVX mice. CONCLUSION: This research suggests that paeonol would be beneficial for alleviating PMS-associated cognitive impairment, anxiety and depression.


Assuntos
Acetofenonas , Fator Neurotrófico Derivado do Encéfalo , Pós-Menopausa , Camundongos , Humanos , Feminino , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipocampo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
9.
Neurotox Res ; 42(2): 21, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441819

RESUMO

The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, ß-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aß peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aß plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.


Assuntos
Quitosana , Nanopartículas , Masculino , Ratos , Animais , Secretases da Proteína Precursora do Amiloide , Ratos Wistar , Envelhecimento , Apolipoproteínas E , Hipocampo , Arginina
10.
J Vis Exp ; (204)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436359

RESUMO

The technique of recording local field potentials (LFPs) is an electrophysiological method used to measure the electrical activity of localized neuronal populations. It serves as a crucial tool in cognitive research, particularly in brain regions like the hippocampus and prefrontal cortex. Dual LFP recordings between these areas are of particular interest as they allow the exploration of interregional signal communication. However, methods for performing these recordings are rarely described, and most commercial recording devices are either expensive or lack adaptability to accommodate specific experimental designs. This study presents a comprehensive protocol for performing dual-electrode LFP recordings in the mouse hippocampus and the prefrontal cortex to investigate the effects of antipsychotic drugs and potassium channel modulators on LFP properties in these areas. The technique enables the measurement of LFP properties, including power spectra within each brain region and coherence between the two. Additionally, a low-cost, custom-designed recording device has been developed for these experiments. In summary, this protocol provides a means to record signals with high signal-to-noise ratios in different brain regions, facilitating the investigation of interregional information communication within the brain.


Assuntos
Terapia por Estimulação Elétrica , Córtex Pré-Frontal , Animais , Camundongos , Encéfalo , Cultura , Hipocampo
11.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474277

RESUMO

The aim of this study was to evaluate the alterations of the hippocampal function that may be related to anxiogenic response to thermal skin injury, including the morpho-functional alterations, and the effects of hyperbaric oxygen (HBO) and Filipendula ulmaria (FU) extract in the treatment of anxiety-like behavior that coincides with thermal skin injury. A rat thermal skin injury experimental model was performed on 2-month-old male Wistar albino rats. The evaluated therapeutic protocols included HBO and/or antioxidant supplementation. HBO was applied for 7 days in the hyperbaric chamber (100% O2, 2.5 ATA, 60 min). Oral administration of FU extract (final concentration of 100 mg/kg b.w.) to achieve antioxidant supplementation was also applied for 7 days. Anxiety level was estimated in the open field and elevated plus-maze test, which was followed by anesthesia, sacrifice, and collection of hippocampal tissue samples. HBO treatment and FU supplementation significantly abolished anxiogenic response to thermal skin injury. This beneficial effect was accompanied by the reduction in hippocampal pro-inflammatory and pro-apoptotic indicators, and enhanced BDNF and GABA-ARα2S gene expression, previously observed in untreated burns. The hippocampal relative gene expression of melatonin receptors and NPY positively responded to the applied protocols, in the same manner as µ and δ opioid receptors, while the opposite response was observed for κ receptors. The results of this study provide some confirmations that adjuvant strategies, such as HBO and antioxidant supplementation, may be simultaneously applied in the treatment of the anxiety-like behavior that coincides with thermal skin injury.


Assuntos
Queimaduras , Filipendula , Oxigenoterapia Hiperbárica , Ratos , Masculino , Animais , Ratos Wistar , Antioxidantes , Hipocampo
12.
Int J Dev Neurosci ; 84(2): 109-121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311365

RESUMO

The mother's thyroid hormone status during gestation and the first few months after delivery can play a crucial role in maturation during the brain development of the child. Transient abnormalities in thyroid function at birth indicate developmental and cognitive disorders in adulthood. Choline supplementation during gestation and the perinatal period in rats causes long-lasting memory improvement in the offspring. However, it remains unclear whether choline is able to restore the deficits in rats with maternal hypothyroidism. The aim of this study was to evaluate the effects of choline supplementation on the alteration of cognitive-behavioral function, long-term potentiation (LTP), and morphological changes as well as apoptosis in pre-pubertal offspring rats. To induce hypothyroidism, 6-propyl-2-thiouracil was added to the drinking water from the 6th day of gestation to the 21st postnatal day (PND). Choline treatment was started twice a day on the first day of the gestation until PND 21 via gavage. LTP recording and Morris water maze (MWM) test were conducted at PND 28. Then, the rats were sacrificed to assess their brains. The results revealed that developmental thyroid hormone deficiency impaired spatial learning and memory and reduced LTP (both: P < 0.001). Choline treatment alleviated LTP (P < 0.001), as well as learning and memory deficits (P < 0.01) in both male and female hypothyroid rats. However, no significant changes were observed in the number of caspase-3 stained cells in choline-receiving hypothyroid groups. The results revealed that developmental thyroid hormone deficiency impaired spatial learning and memory and reduced LTP. Choline treatment alleviated LTP, as well as learning and memory deficits in both male and female hypothyroid rats.


Assuntos
Hipotireoidismo , Potenciação de Longa Duração , Humanos , Gravidez , Criança , Ratos , Animais , Masculino , Feminino , Mães , Hipotireoidismo/complicações , Hipotireoidismo/tratamento farmacológico , Hormônios Tireóideos/farmacologia , Hipocampo , Transtornos da Memória/etiologia , Cognição , Apoptose , Colina/uso terapêutico , Colina/farmacologia , Suplementos Nutricionais , Aprendizagem em Labirinto
13.
CNS Neurosci Ther ; 30(2): e14612, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334030

RESUMO

AIMS: Numerous studies on animals have shown that exposure to general anesthetics in infant stage may cause neurocognitive impairment. However, the exact mechanism is not clear. The dysfunction of iron metabolism can cause neurodevelopmental disorders. Therefore, we investigated the effect of iron metabolism disorder induced by sevoflurane (Sev) on cognitive function and the proliferation of neural precursor cells (NPCs) and neural stem cells (NSCs) in infant mice. METHODS: C57BL/6 mice of postnatal day 14 and neural stem cells NE4C were treated with 2% Sev for 6 h. We used the Morris water maze (MWM) to test the cognitive function of infant mice. The proliferation of NPCs was measured using bromodeoxyuridine (BrdU) label and their markers Ki67 and Pax6 in infant brain tissues 12 h after anesthesia. Meanwhile, we used immunohistochemical stain, immunofluorescence assay, western blot, and flow cytometer to evaluate the myelinogenesis, iron levels, and cell proliferation in cortex and hippocampus or in NE4C cells. RESULTS: The results showed that Sev significantly caused cognitive deficiency in infant mice. Further, we found that Sev inhibited oligodendrocytes proliferation and myelinogenesis by decreasing MBP and CC-1 expression and iron levels. Meanwhile, Sev also induced the iron deficiency in neurons and NSCs by downregulating FtH and FtL expression and upregulating the TfR1 expression in the cortex and hippocampus, which dramatically suppressed the proliferation of NSCs and NPCs as indicated by decreasing the colocalization of Pax6+ and BrdU+ cells, and caused the decrease in the number of neurons. Interestingly, iron supplementation before anesthesia significantly improved iron deficiency in cortex and hippocampus and cognitive deficiency induced by Sev in infant mice. Iron therapy inhibited the decrease of MBP expression, iron levels in neurons and oligodendrocytes, and DNA synthesis of Pax6+ cells in hippocampus induced by Sev. Meanwhile, the number of neurons was partially recovered in hippocampus. CONCLUSION: The results from the present study demonstrated that Sev-induced iron deficiency might be a new mechanism of cognitive impairment caused by inhaled anesthetics in infant mice. Iron supplementation before anesthesia is an effective strategy to prevent cognitive impairment caused by Sev in infants.


Assuntos
Disfunção Cognitiva , Deficiências de Ferro , Células-Tronco Neurais , Humanos , Camundongos , Animais , Sevoflurano/toxicidade , Células-Tronco Neurais/metabolismo , Bromodesoxiuridina/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Proliferação de Células , Ferro/metabolismo , Hipocampo/metabolismo
14.
Brain Res ; 1831: 148814, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395250

RESUMO

BACKGROUND: Influenced by the global aging population, the incidence of Alzheimer's disease (AD) has increased sharply. In addition to increasing ß-amyloid plaque deposition and tau tangle formation, neurogenesis dysfunction has recently been observed in AD. Therefore, promoting regeneration to improve neurogenesis and cognitive dysfunction can play an effective role in AD treatment. Acupuncture and moxibustion have been widely used in the clinical treatment of neurodegenerative diseases because of their outstanding advantages such as early, functional, and benign two-way adjustment. It is urgent to clarify the effectiveness, greenness, and safety of acupuncture and moxibustion in promoting neurogenesis in AD treatment. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice at various ages were used as experimental models to simulate the pathology and behaviors of AD mice. Behavioral experiments, immunohistochemistry, Western blot, and immunofluorescence experiments were used for comparison between different groups. RESULTS: Acupuncture and moxibustion could increase the number of PCNA+ DCX+ cells, Nissl bodies, and mature neurons in the hippocampal Dentate gyrus (DG) of SAMP8 mice, restore the hippocampal neurogenesis, delay the AD-related pathological presentation, and improve the learning and memory abilities of SAMP8 mice. CONCLUSION: The pathological process underlying AD and cognitive impairment were changed positively by improving the dysfunction of neurogenesis. This indicates the promising role of acupuncture and moxibustion in the prevention and treatment of AD.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer , Moxibustão , Camundongos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Hipocampo/patologia , Neurogênese/fisiologia , Giro Denteado/patologia , Modelos Animais de Doenças
15.
J Ethnopharmacol ; 327: 117973, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38403002

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: It has been found that pilose antler peptide has an antidepressant effect on depression. However, the exact molecular mechanism of its antidepressant effect is still unclear. AIM OF THE STUDY: The study sought to determine the impact of monomeric pilose antler peptide (PAP; sequence LVLVEAELRE) on depression as well as investigate potential molecular mechanisms. MATERIALS AND METHODS: Chronic unexpected mild stress (CUMS) was used to establish the model, and the effect of PAP on CUMS mice was detected by the behavioral test. The influence of PAP on neuronal cells and dendritic spine density was observed by immunofluorescence and Golgi staining. FGFR3 and the CaMKII-associated pathway were identified using quantitative real-time polymerase chain reaction, and Western blot analysis was utilized to measure their proteins and gene expression levels. Molecular docking and microscale thermophoresis were applied to detect the binding of PAP and FGFR3. Finally, the effect of FGFR3's overexpression on PAP treatment of depression was detected. RESULTS: PAP alleviated the changes in depressive behavior induced by CUMS, promoted the growth of nerve cells, and the density of dendritic spines was increased to its original state. PAP therapy successfully downregulated the expression of FGFR3 and ERK1/2 while upregulating the expression of CREB, BDNF, and CaMKII. CONCLUSION: Based on the current research, PAP has a therapeutic effect on depression brought on by CUMS by inhibiting FGFR3 expression and enhancing synaptic plasticity.


Assuntos
Depressão , Peptídeos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Simulação de Acoplamento Molecular , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças
16.
Fitoterapia ; 174: 105823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307137

RESUMO

BACKGROUND: In recent years, sleep problems have emerged as a significant factor in the development of diseases that influence cognitive function. The inflammatory response may have a role in the neurobiological processes of sleep deprivation, resulting in impairment of memory and learning. Shenghui Decoction (SHD) is a classic formula in Chinese medicine used to treat forgetfulness and insomnia. However, it remains unclear whether the anti-inflammatory effects of SHD are specifically linked to the inhibition of P2X7R and p38MAPK. METHODS: Analysis of chemical constituents of Shenghui Decoction based on UPLC-Q-TOF-MS / MS. The learning and memory competency of the mice was assessed using the new object recognition and Morris water maze tests. The morphology of hippocampus neurons was observed using HE staining, and the expression of inflammatory factors was measured using ELISA and immunofluorescence. The expression of P2X7R and p38MAPK in the hippocampus was analyzed via real-time PCR and Western blotting. Additionally, the components absorbed into the bloodstream of SHD were analyzed. RESULTS: The study found that SHD contains 47 chemical constituents, including phenolic acids, flavonoids, iridoids, and triterpenoids. In addition, it was observed that SHD significantly improved the learning and memory abilities of the mice. SHD also improved the morphology of hippocampus neurons. The expression of inflammatory factors was decreased in the SHD-treated mice. Additionally, the expression of P2X7R and p38MAPK was decreased in the hippocampus of the SHD-treated mice. Fifteen prototype chemical constituents were detected in blood. CONCLUSIONS: The study suggests that SHD could be a viable treatment for cognitive impairments associated with brain inflammation. The therapeutic effects of SHD are likely due to its chemical components, including phenolic acids, flavonoids, iridoids, and triterpenoids. SHD can improve learning and memory impairment caused by sleep deprivation through the P2X7R/p38MAPK inflammatory signaling pathways.


Assuntos
Privação do Sono , Triterpenos , Camundongos , Animais , Privação do Sono/tratamento farmacológico , Privação do Sono/complicações , Privação do Sono/metabolismo , Neuroproteção , Cromatografia Líquida , 60705 , Espectrometria de Massas em Tandem , Estrutura Molecular , Hipocampo , Flavonoides/farmacologia , Iridoides/farmacologia , Triterpenos/farmacologia , Aprendizagem em Labirinto
17.
Neuroscience ; 544: 28-38, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38423162

RESUMO

Our previous study revealed that acupuncture may exhibit therapeutic effects on Alzheimer's disease (AD) through the activation of metabolism in memory-related brain regions. However, the underlying functional mechanism remains poorly understood and warrants further investigation. In this study, we used resting-state functional magnetic resonance imaging (rsfMRI) to explore the potential effect of electroacupuncture (EA) on the 5xFAD mouse model of AD. We found that the EA group exhibited significant improvements in the number of platforms crossed and the time spent in the target quadrant when compared with the Model group (p < 0.05). The functional connectivity (FC) of left hippocampus (Hip) was enhanced significantly among 12 regions of interest (ROIs) in the EA group (p < 0.05). Based on the left Hip as the seed point, the rsfMRI analysis of the entire brain revealed increased FC between the limbic system and the neocortex in the 5xFAD mice after EA treatment. Additionally, the expression of amyloid-ß(Aß) protein and deposition in the Hip showed a downward trend in the EA group compared to the Model group (p < 0.05). In conclusion, our findings indicate that EA treatment can improve the learning and memory abilities and inhibit the expression of Aß protein and deposition of 5xFAD mice. This improvement may be attributed to the enhancement of the resting-state functional activity and connectivity within the limbic-neocortical neural circuit, which are crucial for cognition, motor function, as well as spatial learning and memory abilities in AD mice.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Neocórtex , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Eletroacupuntura/métodos , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Neocórtex/diagnóstico por imagem , Neocórtex/metabolismo , Aprendizagem Espacial , Modelos Animais de Doenças , Camundongos Transgênicos
18.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339146

RESUMO

A reduction in melatonin function contributes to the acceleration of Alzheimer's disease (AD), and understanding the molecular processes of melatonin-related signaling is critical for intervention in AD progression. Recently, we synthesized a series of melatonin analogues with donepezil fragments and tested them in silico and in vitro. In this study, one of the most potent compounds, 3c, was evaluated in a rat model of pinealectomy (pin) followed by icvAß1-42 infusion. Melatonin was used as the reference drug. Treatment with melatonin and 3c (10 mg/kg, i.p. for 14 days) had a beneficial effect on memory decline and the concomitant increase in hippocampal Aß1-42 and pTAU in the pin+icvAß1-42 rats. Melatonin supplementation facilitated non-amyloidogenic signaling via non-receptor (histone deacetylase sirtuin 1, SIRT1) and receptor-related signaling (MT/ERK/CREB). The hybrid 3c analogue up-regulated the MT1A and MT2B receptors, pERK and pCREB. Our results strongly support the hypothesis that melatonin-related analogues may become a promising drug candidate for Alzheimer's disease therapy.


Assuntos
Doença de Alzheimer , Melatonina , Fragmentos de Peptídeos , Ratos , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Donepezila/farmacologia , Pinealectomia , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia
19.
Nutrients ; 16(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38337665

RESUMO

Brain physiology and morphology are vulnerable to chronic stress, impacting cognitive performance and behavior. However, functional compounds found in food may alleviate these alterations. White quinoa (Chenopodium quinoa, Wild) seeds contain a high content of n-3 fatty acids, including alpha-linolenic acid. This study aimed to evaluate the potential neuroprotective role of a quinoa-based functional food (QFF) in rats. Prepubertal male Sprague-Dawley rats were fed with rat chow or QFF (50% rat chow + 50% dehydrated quinoa seeds) and exposed or not to restraint stress protocol (2 h/day; 15 days). Four experimental groups were used: Non-stressed (rat chow), Non-stressed + QFF, Stressed (rat chow) and Stressed + QFF. Weight gain, locomotor activity (open field), anxiety (elevated plus maze, light-dark box), spatial memory (Y-maze), and dendritic length in the hippocampus were measured in all animals. QFF intake did not influence anxiety-like behaviors, while the memory of stressed rats fed with QFF improved compared to those fed with rat chow. Additionally, QFF intake mitigated the stress-induced dendritic atrophy in pyramidal neurons located in the CA3 area of the hippocampus. The results suggest that a quinoa-supplemented diet could play a protective role in the memory of chronically stressed rats.


Assuntos
Chenopodium quinoa , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Aprendizagem em Labirinto , Suplementos Nutricionais , Hipocampo/fisiologia , Estresse Psicológico/psicologia
20.
J Nutr ; 154(4): 1141-1152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408730

RESUMO

BACKGROUND: Developmental iron deficiency (ID) is associated with long-term cognitive and affective behavioral impairments in humans. Preclinical studies have shown that developmental ID has short- and long-term effects on gene regulation. Prenatal choline supplementation partially rescues early-life ID-induced cognitive deficits in adult male rats. OBJECTIVES: To identify acute and long-term changes in biological processes regulated by developmental ID and modifiable by choline. METHODS: This study compares the hippocampal transcriptomes of postnatal day (P) 15 iron-deficient (acute) and P65 formerly ID (persistent) rats with or without prenatal choline treatment. Pregnant rats were fed an ID (4 mg/kg Fe) or iron-sufficient (IS) (200 mg/kg Fe) diet from gestational day (G) 2 to P7 with or without choline supplementation (5 g/kg choline) from G11 to G18. Hippocampi were collected from P15 or P65 offspring and analyzed for gene expression by RNA sequencing. RESULTS: Developmental ID-induced changes suggested modified activity of oxidative phosphorylation and fatty acid metabolism. Prenatal choline supplementation induced robust changes in gene expression, particularly in iron-deficient animals, where it partially mitigated the early-life ID-dysregulated genes. Choline supplementation also altered the hippocampal transcriptome in the IS rats, with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided global assessments of gene expression regulated by iron and choline. Our new findings highlight genes responding to iron or choline treatments, including a potentially novel choline-regulated transporter (IPO7), with shared effects on neuroinflammation in the male rat hippocampus.


Assuntos
Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Ratos , Animais , Masculino , Ferro/metabolismo , Transcriptoma , Colina , Animais Recém-Nascidos , Ratos Sprague-Dawley , Vitaminas/farmacologia , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA